The Bailey Method

Achieving Volumetrics and HMA Compactability
Aggregate Blending

Where do you start?

- Trial and *Error*?
 - Specification Bands
 - Coarse
 - Medium
 - Fine
 - Which blend is *best*?
 - How will it work in the field during placement?
 - How will it perform?

- Is there a more *systematical* way to find a starting point?
Aggregate Blending

The Bailey Method

- Originally developed by Robert D. Bailey (Illinois Department of Transportation)

- Focus is Aggregate **packing**!

- Determine “**Coarse**” and “**Fine**”

- Evaluate individual agg’s **and** combined blend by **VOLUME** as well as by **weight**
Aggregate Packing

What Influences the Results?

- Gradation
 - continuously-graded, gap-graded, etc.

- Type & Amount of Compactive Effort
 - static pressure, impact or shearing

- Shape
 - flat & elongated, cubical, round

- Surface Texture (micro-texture)
 - smooth, rough

- Strength
 - degradation or lack thereof
Defining “Coarse” and “Fine”

- "Coarse" fraction
 - Larger particles that create voids

- "Fine" fraction
 - Smaller particles that fill voids

- Estimate void size using Nominal Maximum Particle Size (NMPS)
 - Break between “Coarse” and “Fine”
 - Primary Control Sieve (PCS)
Diameter \((d)\) = NMPS

Flat face of aggregate particle

Round face of aggregate particle

Average Void size = 0.22\(\times d\) for all four conditions

Primary Control Sieve = 0.22 \(\times\) NMPS
Primary Control Sieve

<table>
<thead>
<tr>
<th>Mixture NMPS</th>
<th>NMPS x 0.22</th>
<th>Primary Control Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5mm</td>
<td>8.250mm</td>
<td>9.5mm</td>
</tr>
<tr>
<td>25.0mm</td>
<td>5.500mm</td>
<td>4.75mm</td>
</tr>
<tr>
<td>19.0mm</td>
<td>4.180mm</td>
<td>4.75mm</td>
</tr>
<tr>
<td>12.5mm</td>
<td>2.750mm</td>
<td>2.36mm</td>
</tr>
<tr>
<td>9.5mm</td>
<td>2.090mm</td>
<td>2.36mm</td>
</tr>
<tr>
<td>4.75mm</td>
<td>1.045mm</td>
<td>1.18mm</td>
</tr>
</tbody>
</table>

PCS determines the break between **Coarse** and **Fine** in the combined blend **and** if a given aggregate is a **CA** or **FA**
Evaluating Aggregates by Volume

- Why?
 - Better understand aggregate packing
 - Control VOLUME of Coarse and Fine for Mix “Type”

- How?
 - Test the individual Coarse and Fine aggregates
Loose Unit Weight - CA

- **NO** compactive effort applied
- **Start** of particle-to-particle contact
- Use **shoveling** procedure
- Strike off ~ level
 - Careful **not** to compact
- Determine **LUW**
 - Kg/m³ or lbs./ft³
- Determine **volume** of **voids**
Rodded Unit Weight - CA

- **With** compactive effort applied
- **Increased** particle-to-particle contact
- **Three** equal lifts using **shoveling** procedure
- Rod **25** times per lift
- **Strike off ~ level**
 - Careful **not** to compact
- **Determine RUW**
 - Kg/m³ or lbs./ft³
- **Determine volume of voids**

AASHTO T19
Chosen Unit Weight - CA(s)

- **< LUW**: Fine-Graded (< 90%)
- **LUW**: Coarse-Graded (95-105%)
- **RUW**: SMA (110-125%)
Chosen Unit Weight - FA(s)

- **100% LUW**
 - SMA

- **100% RUW**
 - Dense-graded

FA CUW “SET” According To Mix Type
Developing the Combined Blend

1. Determine Mix **Type** & NMPS
2. Choose the **VOLUME** of **CA**
3. Blend the **CA’s** by **VOLUME**
4. Blend the **FA’s** by **VOLUME**
5. Choose the **desired** % Minus 0.075mm

Convert the Individual aggregate %’s from **VOLUME** to **weight**
Combined Blend Evaluation

- Evaluation method depends on which fraction (Coarse or Fine) is in control:
 - Coarse-graded, SMA
 - Fine-graded
Combined Blend Evaluation

Coarse-Graded Mixes

1. **CA CUW (\% PCS)**
 - \(PCS = 0.22 \times NMPS \)

2. **CA Ratio**
 - \(\frac{\% \text{ Half Sieve} - \% \text{ PCS}}{100 - \% \text{ Half Sieve}} \)

3. **FA_r Ratio**
 - \(\frac{\% \text{ TCS}}{\% \text{ SCS}} \)

4. **FA_c Ratio**
 - \(\frac{\% \text{ SCS}}{\% \text{ PCS}} \)
Combined Blend Evaluation

Coarse-Graded Mixes

1. **CA CUW increase** = VMA increase
 - 4% change in PCS ≅ 1% change in VMA or Voids

2. **CA Ratio increase** = VMA increase
 - 0.20 change ≅ 1% change in VMA or Voids

3. **FAc Ratio increase** = VMA decrease
 - 0.05 change ≅ 1% change in VMA or Voids

4. **FAf Ratio increase** = VMA decrease
 - 0.05 change ≅ 1% change in VMA or Voids

Has the most influence on VMA or Voids
Combined Blend Gradation

Sieve Size (mm) Raised to 0.45 Power

<table>
<thead>
<tr>
<th>Sieve</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>92</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
</tr>
<tr>
<td>D</td>
<td>32</td>
</tr>
<tr>
<td>E</td>
<td>25</td>
</tr>
<tr>
<td>F</td>
<td>19</td>
</tr>
<tr>
<td>G</td>
<td>17</td>
</tr>
<tr>
<td>H</td>
<td>15</td>
</tr>
<tr>
<td>I</td>
<td>13</td>
</tr>
<tr>
<td>J</td>
<td>11</td>
</tr>
<tr>
<td>K</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Coarse

Fine

0 10 20 30 40 50 60 70 80 90 100

% Passing

K J I H G F E D C B A

Sieve Size (mm) Raised to 0.45 Power
Combined Blend Evaluation

SMA Mixes

1. **CA CUW increase** = VMA increase
 - 2% change in PCS ≈ 1% change in VMA or Voids

2. **CA Ratio increase** = VMA increase
 - 0.20 change ≈ 1% change in VMA or Voids

3. **FAc Ratio increase** = VMA decrease
 - 0.10 change ≈ 1% change in VMA or Voids

4. **FAf Ratio increase** = VMA decrease
 - 0.10 change ≈ 1% change in VMA or Voids

Has the most influence on VMA or Voids

Has the 2nd most influence on VMA or Voids
Combined Blend Gradation

<table>
<thead>
<tr>
<th>Sieve</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>98</td>
</tr>
<tr>
<td>C</td>
<td>85</td>
</tr>
<tr>
<td>D</td>
<td>72</td>
</tr>
<tr>
<td>E</td>
<td>58</td>
</tr>
<tr>
<td>F</td>
<td>40</td>
</tr>
<tr>
<td>G</td>
<td>32</td>
</tr>
<tr>
<td>H</td>
<td>21</td>
</tr>
<tr>
<td>I</td>
<td>12</td>
</tr>
<tr>
<td>J</td>
<td>7</td>
</tr>
<tr>
<td>K</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Sieve Size (mm) Raised to 0.45 Power

Fine-graded

Fine

Coarse
Combined Blend Evaluation

Fine-Graded Mixes

- Original Coarse Fraction
- Original Half Sieve
- Original PCS

- New Coarse Fraction
- New Half Sieve
- New PCS

- New Fine Fraction
- New SCS
- New TCS

1. % CA LUW
2. New CA Ratio
3. New FA_c Ratio
4. New FA_f Ratio
Combined Blend Evaluation

Fine-Graded Mixes

1. **CA CUW decrease** = **VMA increase**
 - 6% change **original PCS** \cong 1% change in **VMA or Voids**

2. **New CA Ratio increase** = **VMA increase**
 - 0.35 change \cong 1% change in **VMA or Voids**

3. **New FA$_c$ Ratio increase** = **VMA decrease**
 - 0.05 change \cong 1% change in **VMA or Voids**

4. **New FA$_f$ Ratio increase** = **VMA decrease**
 - 0.05 change \cong 1% change in **VMA or Voids**

- **Old CA Ratio** still relates to **segregation susceptibility**

Has the most influence on **VMA or Voids**
Estimating VMA or Voids

Coarse-Graded Mix Example

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>Trial #1 (%)</th>
<th>NMPS</th>
<th>Trial #2 (%)</th>
<th>HALF</th>
<th>PCS</th>
<th>SCS</th>
<th>TCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>100.0</td>
<td></td>
<td>25.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>97.4</td>
<td></td>
<td>19.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5</td>
<td>76.2</td>
<td></td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>63.5</td>
<td></td>
<td>9.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75</td>
<td>38.2</td>
<td></td>
<td>4.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td>23.6</td>
<td></td>
<td>2.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18</td>
<td>18.8</td>
<td></td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>13.1</td>
<td></td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>7.4</td>
<td></td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075</td>
<td>4.0</td>
<td></td>
<td>0.075</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NMPS, HALF, PCS, TCS are the grading methods used for different size fractions.
Estimating VMA or Voids

Trial #2 vs. Trial #1

- **PCS**

 \[37.2\% - 38.2\% = -1.0\% \]

- **CA** ratio

 \[0.725 - 0.693 = +0.032 \]

- **FA_c** ratio

 \[0.444 - 0.492 = -0.048 \]

- **FA_f** ratio

 \[0.412 - 0.394 = +0.018 \]

- **Increases** VMA or Voids

 \[1.0/4.0 = +0.25\% \]

- **Increases** VMA or Voids

 \[0.032/0.2 = +0.16\% \]

- **Increases** VMA or Voids

 \[0.048/0.05 = +0.96\% \]

- **Decreases** VMA or Voids

 \[0.018/0.05 = -0.36\% \]

Total Estimated Change:

- **Plus ~ 1.0\% VMA**
<table>
<thead>
<tr>
<th>Sample Identification</th>
<th>Mix Design</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0mm</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>12.5mm</td>
<td>98.8</td>
<td>95.9</td>
<td>95.7</td>
<td>98.9</td>
<td>97.5</td>
<td></td>
</tr>
<tr>
<td>9.5mm</td>
<td>71.2</td>
<td>71.0</td>
<td>68.4</td>
<td>70.7</td>
<td>70.7</td>
<td></td>
</tr>
<tr>
<td>6.25mm</td>
<td>40.1</td>
<td>40.6</td>
<td>39.4</td>
<td>39.4</td>
<td>39.8</td>
<td></td>
</tr>
<tr>
<td>4.75mm</td>
<td>25.7</td>
<td>26.6</td>
<td>26.0</td>
<td>24.9</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>2.36mm</td>
<td>21.7</td>
<td>21.2</td>
<td>20.7</td>
<td>20.4</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>1.18mm</td>
<td>17.4</td>
<td>16.9</td>
<td>16.5</td>
<td>16.0</td>
<td>17.4</td>
<td></td>
</tr>
<tr>
<td>0.600mm</td>
<td>14.8</td>
<td>14.1</td>
<td>14.0</td>
<td>13.1</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>0.300mm</td>
<td>13.1</td>
<td>12.1</td>
<td>11.7</td>
<td>11.1</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>0.150mm</td>
<td>10.9</td>
<td>10.0</td>
<td>9.5</td>
<td>9.3</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>0.075mm</td>
<td>9.2</td>
<td>7.8</td>
<td>8.2</td>
<td>7.4</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>% AC</td>
<td>5.70</td>
<td>5.86</td>
<td>5.65</td>
<td>5.72</td>
<td>5.72</td>
<td></td>
</tr>
<tr>
<td>% AC Absptn</td>
<td>0.41</td>
<td>0.61</td>
<td>0.23</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Actual VMA</td>
<td>17.9</td>
<td>18.5</td>
<td>17.6</td>
<td>18.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Voids</td>
<td>4.0</td>
<td>4.8</td>
<td>3.4</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0.307</td>
<td>0.327</td>
<td>0.308</td>
<td>0.313</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>FAC</td>
<td>0.682</td>
<td>0.665</td>
<td>0.676</td>
<td>0.642</td>
<td>0.664</td>
<td></td>
</tr>
<tr>
<td>FAF</td>
<td>0.736</td>
<td>0.709</td>
<td>0.679</td>
<td>0.710</td>
<td>0.726</td>
<td></td>
</tr>
<tr>
<td>PCS</td>
<td>0.17</td>
<td>0.33</td>
<td>0.43</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0.20</td>
<td>0.01</td>
<td>0.06</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAC</td>
<td>0.23</td>
<td>0.08</td>
<td>0.53</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAF</td>
<td>-0.36</td>
<td>-0.76</td>
<td>-0.35</td>
<td>-0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.23</td>
<td>0.34</td>
<td>0.68</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est VMA</td>
<td>18.1</td>
<td>17.6</td>
<td>18.6</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act VMA</td>
<td>18.5</td>
<td>17.6</td>
<td>18.6</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff in VMA</td>
<td>-0.4</td>
<td>0.0</td>
<td>-0.1</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est Voids</td>
<td>4.3</td>
<td>3.3</td>
<td>4.8</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act Voids</td>
<td>4.8</td>
<td>3.4</td>
<td>4.9</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS</td>
<td>0.17</td>
<td>0.17</td>
<td>0.10</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0.20</td>
<td>-0.19</td>
<td>0.05</td>
<td>-0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAC</td>
<td>0.23</td>
<td>-0.15</td>
<td>0.45</td>
<td>-0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAF</td>
<td>-0.36</td>
<td>-0.40</td>
<td>0.41</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.23</td>
<td>-0.57</td>
<td>1.02</td>
<td>-0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est VMA</td>
<td>18.1</td>
<td>17.9</td>
<td>18.6</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act VMA</td>
<td>18.5</td>
<td>17.6</td>
<td>18.7</td>
<td>17.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff in VMA</td>
<td>-0.4</td>
<td>0.3</td>
<td>-0.1</td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Est Voids</td>
<td>4.3</td>
<td>3.8</td>
<td>4.8</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act Voids</td>
<td>4.8</td>
<td>3.4</td>
<td>4.9</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diff in Voids</td>
<td>-0.5</td>
<td>0.4</td>
<td>-0.1</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Predicting Performance

- We can relate to volumetric changes well.
- We can relate blend gradations and the four main principles to compactibility and segregation.
- But......performance includes much more!
So How Does the Method Help?

- In Developing **New** Blends:
 - Field Compactibility
 - Segregation Susceptibility

- In Evaluating **Existing** Blends:
 - What’s worked and what hasn’t?
 - More clearly define principle ranges

- In **Estimating** VMA/Void changes between:
 - Design trials
 - QC samples
 - **Saves Time and Reduces Risk!**
Questions or Comments?

Thank You!