The Bailey Method

Achieving Volumetrics and HMA Compactability

Aggregate Blending Where do you start?

- Trial and Error?
- Specification Bands
- Coarse
- Medium
- Fine
- Which blend is best?
- How will it work in the field during placement?
- How will it perform?
- Is there a more systematical way to find a starting point?

Aggregate Blending The Bailey Method

- Originally developed by Robert D. Bailey (Illinois Department of Transportation)
- Focus is Aggregate packing!
- Determine "Coarse" and "Fine"
- Evaluate individual agg's and combined blend by VOLUME as well as by weight

Aggregate Packing What I nfluences the Results?

- Gradation
- continuously-graded, gap-graded, etc.
- Type \& Amount of Compactive Effort
- static pressure, impact or shearing
- Shape
- flat \& elongated, cubical, round
- Surface Texture (micro-texture)
- smooth, rough
- Strength
- degradation or lack thereof

Defining "Coarse" and "Fine"

- "Coarse" fraction
- Larger particles that create voids
- "Fine" fraction
- Smaller particles that fill voids
- Estimate void size using Nominal Maximum Particle Size (NMPS)
- Break between "Coarse" and "Fine"
- Primary Control Sieve (PCS)

Primary C Control Sieve $=\mathbf{0 . 2 2} \times$ NMPS

Primary Control Sieve

Mixture NMPS
37.5 mm
25.0 mm
19.0mm
12.5 mm
9.5 mm
4.75 mm

NMPS x 0.22
8.250 mm
5.500 mm
4.180 mm
2.750 mm
2.090 mm
1.045 mm

Primary Control Sieve
9.5 mm
4.75 mm
4.75 mm
2.36 mm
2.36 mm
1.18 mm

PCS determines the break between Coarse and Fine in the combined blend and if a given aggregate is a CA or FA

Evaluating Aggregates by

Volume

- Why?
- Better understand aggregate packing
- Control VOLUME of Coarse and Fine for Mix "Type"

■ How?

- Test the individual Coarse and Fine aggregates

Loose Unit $\underline{\text { Weight - CA }}$

- NO compactive effort applied
- Start of particle-toparticle contact
- Use shoveling procedure
- Strike off ~ level
- Careful not to compact
- Determine LUW
- Kg/m ${ }^{3}$ or lbs./ft ${ }^{3}$
- Determine volume of voids

Rodded Unit Weight - CA

AASH 0 T19

- Determine volume of voids

Chosen Unit Weight - CA(s)

< LUW

Fine-Graded
< 90\%

LUW

Coarse-Graded 95-105\%

RUW

SMA
110-125\%

Chosen Unit Weight - FA(s)

SMA
Dense-graded

Developing the Combined Blend

1. Determine Mix Type \& NMPS
2. Choose the VOLUME of CA
3. Blend the CA's by VOLUME
4. Blend the FA's by VOLUME
5. Choose the desired \% Minus 0.075 mm

Convert the Individual aggregate \%'s from VOLUME to weight

Combined Blend Evaluation

- Evaluation method depends on which fraction (Coarse or Fine) is in control:
- Coarse-graded, SMA
- Fine-graded

Combined Blend Gradation

Combined Blend Evaluation Coarse-Graded Mixes

Combined Blend Evaluation
 Coarse-Graded Mixes

1. CA CUW increase $=$ VMA increase

- 4\% change in PCS $\cong \mathbf{1 \%}$ change in VMA or Voids

2. CA Ratio increase $=$ VMA increase

- $\mathbf{0 . 2 0}$ change $\cong \mathbf{1 \%}$ change in VMA or Voids

3. $\quad \mathrm{FA}_{\mathrm{c}}$ Ratio increase $=$ VMA decrease

- 0.05 change $\cong \mathbf{1 \%}$ change in VMA or Voids

4. \quad FAf Ratio increase $=$ VMA decrease

Has the most influence on VMA or Voids

- $\mathbf{0 . 0 5}$ change $\cong \mathbf{1 \%}$ change in VMA or Voids

Combined Blend Gradation

Combined Blend Evaluation SMA Mixes

1. $\mathbf{C A} C U W$ increase $=$ VMA increase

- $\mathbf{2 \%}$ change in PCS $\cong \mathbf{1 \%}$ change in VMA or Voids

2. \quad CA Ratio increase $=$ VMA increase

- $\mathbf{0 . 2 0}$ change $\cong \mathbf{1 \%}$ change in VMA or Voids

3. \quad FA $_{c}$ Ratio increase $=$ VMA decrease

- 0.10 change $\cong \mathbf{1 \%}$ change in VMA or Voids

4. FA_{f} Ratio increase $=$ VMA decrease

- 0.10 change $\cong \mathbf{1 \%}$ change in VMA or Voids

Has the $2^{\text {nd }}$ most influence on VMA or Voids

Combined Blend Gradation

Combined Blend Evaluation Fine-Graded Mixes

Combined Blend Evaluation Fine-Graded Mixes

1. $\mathbf{C A}$ CUW decrease $=$ VMA increase

- 6% change original PCS $\cong 1 \%$ change in VMA or Voids

2. New CA Ratio increase $=$ VMA increase

- 0.35 change $\cong \mathbf{1 \%}$ change in VMA or Voids

3. New FA Ratio increase $=$ VMA decrease

- $\mathbf{0 . 0 5}$ change $\cong \mathbf{1 \%}$ change in VMA or Voids

4. New FA Ratio increase = VMA decrease

- 0.05 change $\cong \mathbf{1 \%}$ change in VMA or Voids
- Old CA Ratio still relates to segregation susceptibility

Estimating VMA or Voids Coarse-Graded Mix Example

- Trial \#1 (\% Passing)

25.0 mm	100.0
19.0 mm	97.4

12.5 mm 76.2
$9.5 \mathrm{~mm} \quad 63.5 \longleftarrow \mathrm{HALF} \longrightarrow 9.5 \mathrm{~mm} \quad 63.6$
$4.75 \mathrm{~mm} \quad 38.2 \longleftarrow$ PCS $\longrightarrow 4.75 \mathrm{~mm} 37.2$
$2.36 \mathrm{~mm} \quad 23.6 \quad 2.36 \mathrm{~mm} \quad 22.1$
$1.18 \mathrm{~mm} 18.8 \longleftarrow$ SCS $\longrightarrow 1.18 \mathrm{~mm} 16.5$
$\begin{array}{llll}0.60 \mathrm{~mm} & 13.1 & 0.60 \mathrm{~mm} & 11.8\end{array}$
$0.30 \mathrm{~mm} \quad 7.4 \longleftarrow$ TCS $\longrightarrow 0.30 \mathrm{~mm} 6.8$
0.15 mm 5.7
0.075 mm 4.0

- Trial \#2 (\% Passing)
$25.0 \mathrm{~mm} \quad 100.0$
19.0 mm 98.0
$12.5 \mathrm{~mm} \quad 76.5$
$0.15 \mathrm{~mm} \quad 5.2$
0.075 mm 3.5

Estimating VMA or Voids
 Trial \#2 vs. Trial \#1

- PCS
$37.2 \%-38.2 \%=-1.0 \%$
- CA ratio
$0.725-0.693=+0.032$
- $F A_{c}$ ratio
$0.444-0.492=-0.048$
- $\quad \mathrm{FA}_{\mathrm{f}}$ ratio
$0.412-0.394=+0.018$
- I ncreases VMA or Voids
- 1.0/4.0 = + 0.25\%
- I ncreases VMA or Voids
- 0.032/0.2 = + 0.16\%
- I ncreases VMA or Voids
- 0.048/0.05 = + 0.96\%
- Decreases VMA or Voids
- 0.018/0.05 = - 0.36\%
- Total Estimated Change:
. Plus ~ 1.0\% VMA

Sample	Mix Design	1	2	3	4
Identification					Proposed
19.0 mm	100.0	100.0	100.0	100.0	100.0
12.5 mm	98.8	95.9	95.7	98.9	97.5
9.5 mm	71.2	71.0	68.4	70.7	70.7
6.25 mm	40.1	40.6	39.4	39.4	39.8
4.75 mm	25.7	26.6	26.0	24.9	25.6
2.36 mm	21.7	21.2	20.7	20.4	22.0
1.18 mm	17.4	16.9	16.5	16.0	17.4
0.600 mm	14.8	14.1	14.0	13.1	14.6
0.300 mm	13.1	12.1	11.7	11.1	12.7
0.150 mm	10.9	10.0	9.5	9.3	10.6
0.075 mm	9.2	7.8	8.2	7.4	8.3
\% AC	5.70	5.86	5.65	5.72	5.72
\% AC Absptn	0.41	0.61	0.23	0.46	0.46
Actual VMA	17.9	18.5	17.6	18.7	
Actual Voids	4.0	4.8	3.4	4.9	
CA	0.307	0.327	0.308	0.313	0.297
FAc	0.682	0.665	0.676	0.642	0.664
FAf	0.736	0.709	0.679	0.710	0.726
PCS	Compares Each Sample to the Mix Design	0.17	0.33	0.43	-0.10
CA		0.20	0.01	0.06	-0.10
FAc		0.23	0.08	0.53	0.24
FAf		-0.36	-0.76	-0.35	-0.13
Total		0.23	-0.34	0.68	-0.09
Est VMA		18.1	17.6	18.6	17.8
Act VMA		18.5	17.6	18.7	0.0
Diff in VMA		-0.4	0.0	-0.1	17.8
Est Voids		4.3	3.3	4.8	4.0
Act Voids		4.8	3.4	4.9	0.0
Diff in Voids		-0.5	-0.1	-0.1	4.0
PCS	Compares Each	0.17	0.17	0.10	-0.53
CA		0.20	-0.19	0.05	-0.16
FAc		0.23	-0.15	0.45	-0.29
FAf		-0.36	-0.40	0.41	0.21
Total	Sample to the	0.23	-0.57	1.02	-0.77
Est VMA		18.1	17.9	18.6	17.9
Act VMA		18.5	17.6	18.7	0.0
Diff in VMA	Previous	-0.4	0.3	-0.1	17.9
Est Voids	Sample	4.3	3.8	4.8	4.1
Act Voids		4.8	3.4	4.9	0.0
Diff in Voids		-0.5	0.4	-0.1	4.1

Predicting Performance

- We can relate to volumetric changes well
- We can relate blend gradations and the four main principles to compactibility and segregation
- But.......performance includes much more!

So How Does the Method Help?

- In Developing New Blends:
- Field Compactibility
- Segregation Susceptibility
- In Evaluating Existing Blends:
- What's worked and what hasn't?
- More clearly define principle ranges
- In Estimating VMA/Void changes between:

- Design trials
- QC samples
- Saves Time and Reduces Risk!

Questions or Comments?

