The Bailey Method

Achieving Volumetrics and HMA Compactability

Aggregate Blending Where do you start?

- Trial and *Error*?
 - Specification Bands
 - Coarse
 - Medium
 - Fine
 - Which blend is **best**?
 - How will it work in the field during placement?
 - How will it perform?
- Is there a more systematical way to find a starting point?

Aggregate Blending The Bailey Method

- Originally developed by Robert D. Bailey (Illinois Department of Transportation)
- Focus is Aggregate packing!
- Determine "Coarse" and "Fine"
- Evaluate individual agg's <u>and</u> combined blend by VOLUME as well as by weight

Aggregate Packing What Influences the Results?

Gradation

- continuously-graded, gap-graded, etc.

- Type & Amount of Compactive Effort
 - static pressure, impact or shearing

Shape

- flat & elongated, cubical, round
- Surface Texture (micro-texture)
 - smooth, rough

Strength

- degradation or lack thereof

Defining "Coarse" and "Fine"

- "Coarse" fraction
 - Larger particles that create voids
- "Fine" fraction
 - Smaller particles that fill voids
- Estimate void size using Nominal Maximum Particle Size (NMPS)
 - Break between "Coarse" and "Fine"
 - Primary Control Sieve (PCS)

<u>Primary Control Sieve = 0.22 x NMPS</u>

Primary Control Sieve

Mixture NMPS	NMPS x 0.22Primary Control S	
37.5mm	8.250mm	9.5mm
25.0mm	5.500mm	4.75mm
19.0mm	4.180mm	4.75mm
12.5mm	2.750mm	2.36mm
9.5mm	2.090mm	2.36mm
4.75mm	1.045mm	1.18mm

PCS determines the **break** between **Coarse** and **Fine** in the combined blend <u>and</u> if a **given** aggregate is a **CA** or **FA**

Evaluating Aggregates by Volume

- Why?
 - Better understand aggregate packing

- Control VOLUME of Coarse and **Fine** for Mix "**Type**"
- How?
 - Test the individual Coarse and **Fine** aggregates

Loose Unit Weight - CA

- NO compactive effort applied
- Start of particle-toparticle contact
- Use shoveling procedure
- Strike off ~ level
 - Careful not to compact
- Determine LUW
 - Kg/m³ or lbs./ft³
- Determine volume of voids

Rodded Unit Weight - CA

AASH TO T19

- With compactive effort applied
- Increased particle-toparticle contact
- Three equal lifts using shoveling procedure
- Rod 25 times per lift
- Strike off ~ level
 - Careful not to compact
- Determine RUW
 - Kg/m³ or lbs./ft³
- Determine volume of voids

<u>Chosen</u> Unit Weight - CA(s)

<u>Chosen</u> Unit Weight - FA(s)

100% LUW FA CUW "SET" According To Mix Type

SMA

Dense-graded

Developing the Combined Blend

- 1. Determine Mix **Type** & NMPS
- 2. Choose the **VOLUME** of **CA**
- 3. Blend the CA's by VOLUME
- 4. Blend the **FA's** by **VOLUME**
- 5. Choose the *desired* % Minus 0.075mm

Convert the Individual aggregate %'s from **VOLUME** to **weight**

Combined Blend Evaluation

- Evaluation method depends on which fraction (Coarse or Fine) is in control:
 - Coarse-graded, SMA
 - Fine-graded

Combined Blend Gradation

Sieve Size (mm) Raised to 0.45 Power

% Passing

Combined Blend Evaluation Coarse-Graded Mixes

1. CA CUW increase = VMA increase

- 4% change in PCS ≅ 1% change in VMA or Voids
- 2. CA Ratio increase = VMA increase
 - 0.20 change ≅ 1% change in VMA or Voids
- 3. FA_c Ratio increase = VMA decrease <
 - 0.05 change ≅ 1% change in VMA or Voids
- 4. FA_f Ratio increase = VMA decrease
 - 0.05 change ≅ 1% change in VMA or Voids

Has the

most

influence

on VMA

or Voids

Combined Blend Gradation

Sieve Size (mm) Raised to 0.45 Power

% Passing

Combined Blend Evaluation SMA Mixes

- 1. CA CUW increase = VMA increase
 - 2% change in PCS ≅ 1% change in VMA or Voids
- 2. CA Ratio increase = VMA increase
 - 0.20 change ≅ 1% change in VMA or Voids
- **3. FA**_c Ratio increase = VMA decrease
 - 0.10 change ≅ 1% change in VMA or Voids
- 4. FA_f Ratio increase = VMA decrease ∠
 - 0.10 change \cong 1% change in VMA or Voids

Has the 2nd most influence on VMA or Voids

influence on

VMA or

Voids

Combined Blend Gradation

% Passing

Combined Blend Evaluation Fine-Graded Mixes

- **1. CA** CUW decrease = VMA increase
 - 6% change <u>original</u> PCS ≅ 1% change in VMA or Voids
- 2. New CA Ratio increase = VMA increase
 - **0.35** change \cong **1%** change in VMA or Voids
- 3. New FA_c Ratio increase = VMA decrease <
 - **0.05** change \cong **1%** change in VMA or Voids
- 4. **New FA_f Ratio increase = VMA decrease**
 - **0.05** change \cong **1%** change in VMA or Voids
- Old CA Ratio <u>still</u> <u>relates</u> to segregation susceptibility

Has the

most

influence

on VMA

or Voids

Estimating VMA or Voids Coarse-Graded Mix Example

Trial #1 (%	Passing)	Trial #2 (%	Passing)
25.0mm	100.0	25.0mm	100.0
19.0mm	97.4 ← NMPS →	19.0mm	98.0
12.5mm	76.2	12.5mm	76.5
9.5mm	63.5 ← HALF →	9.5mm	63.6
4.75mm	38.2 ← PCS →	4.75mm	37.2
2.36mm	23.6	2.36mm	22.1
1.18mm	18.8 ← SCS →	1.18mm	16.5
0.60mm	13.1	0.60mm	11.8
0.30mm	7.4 ← TCS →	0.30mm	6.8
0.15mm	5.7	0.15mm	5.2
0.075mm	4.0	0.075mm	3.5

Estimating VMA or Voids Trial #2 vs. Trial #1

PCS

37.2% - 38.2% = - 1.0%

- CA ratio
 0.725 0.693 = + 0.032
- FA_c ratio
 0.444 0.492 = 0.048
- **FA**_f ratio

0.412 - 0.394 = + 0.018

- Increases VMA or Voids
 - -1.0/4.0 = +0.25%
- Increases VMA or Voids
 - \bullet 0.032/0.2 = + 0.16%
- Increases VMA or Voids
 - \bullet 0.048/0.05 = + 0.96%
- Decreases VMA or Voids
 - -0.018/0.05 = -0.36%
- Total Estimated Change:
 - Plus ~ 1.0% VMA

Sample	Mix Design	1	2	3	4
Identification					Proposed
19.0mm	100.0	100.0	100.0	100.0	100.0
12.5mm	98.8	95.9	95.7	98.9	97.5
9.5mm	71.2	71.0	68.4	70.7	70.7
6.25mm	40.1	40.6	39.4	39.4	39.8
4.75mm	25.7	26.6	26.0	24.9	25.6
2.36mm	21.7	21.2	20.7	20.4	22.0
1.18mm	17.4	16.9	16.5	16.0	17.4
0.600mm	14.8	14.1	14.0	13.1	14.6
0.300mm	13.1	12.1	11.7	11.1	12.7
0.150mm	10.9	10.0	9.5	9.3	10.6
0.075mm	9.2	7.8	8.2	7.4	8.3
% AC	5.70	5.86	5.65	5.72	5.72
% AC Absptn	0.41	0.61	0.23	0.46	0.46
Actual VMA	17.9	18.5	17.6	18.7	
Actual Voids	4.0	4.8	3.4	4.9	
CA	0.307	0.327	0.308	0.313	0.297
FAc	0.682	0.665	0.676	0.642	0.664
FAf	0.736	0.709	0.679	0.710	0.726
PCS		0.17	0.33	0.43	-0.10
CA		0.20	0.01	0.06	-0.10
FAc	Compares	0.23	0.08	0.53	0.24
FAf		-0.36	-0.76	-0.35	-0.13
Total	Each	0.23	-0.34	0.68	-0.09
Est VMA	Sample to	18.1	17.6	18.6	17.8
Act VMA	-	18.5	17.6	18.7	0.0
Diff in VMA	the Mix	-0.4	0.0	-0.1	17.8
Est Voids	Design	4.3	3.3	4.8	4.0
Act Voids		4.8	3.4	4.9	0.0
Diff in Voids		-0.5	-0.1	-0.1	4.0
PCS		0.17	0.17	0.10	-0.53
CA		0.20	-0.19	0.05	-0.16
FAc	Compares	0.23	-0.15	0.45	-0.29
FAf	Each	-0.36	-0.40	0.41	0.21
Total		0.23	-0.57	1.02	-0.77
Est VMA	Sample to	18.1	17.9	18.6	17.9
Act VMA	the	18.5	17.6	18.7	0.0
Diff in VMA	Previous	-0.4	0.3	-0.1	17.9
Est Voids		4.3	3.8	4.8	4.1
Act Voids	Sample	4.8	3.4	4.9	0.0
Diff in Voids		-0.5	0.4	-0.1	4.1

Predicting Performance

- We can relate to volumetric changes well
- We can relate blend gradations and the four main principles to compactibility and segregation
- But.....performance includes much more!

So How Does the Method *Help*?

In Developing New Blends:

- Field Compactibility
- Segregation Susceptibility
- In Evaluating Existing Blends:
 - What's worked and what hasn't?
 - More clearly define principle ranges
- In Estimating VMA/Void changes between:
 - Design trials
 - QC samples
 - Saves Time and Reduces Risk!

Questions or Comments?

