Chemistry of Asphalt Aggregate Interaction

SL April 14, 2002 AI Spring meeting

Stripping in Asphalt pavements

Stripping due to lack of chemical interaction between asphalt and aggregate/bonding (Adhesion)

Scope

- Analyze in chemical terms the

 Nature of asphalt and aggregate interaction
 What is stripping and reasons for stripping
 Possible ways to correct the problem
- Initiate discussion about what is being measured by the common stripping tests

Adhesion and active adhesion

Adhesion:

"The process of forming chemical bond between the asphalt film and the aggregate surface"

Active adhesion:

"Coating and formation of chemical bond in the presence of water"

Stripping

"Stripping is the breaking of the bond between aggregate and asphalt by the action of water"

Adhesion and Stripping

• Definition indicate that it is a Surface phenomenon

• The surface or interface is between asphalt and aggregate

General Asphalt Composition

Asphaltenes : polar condensed aromatics MW 1000-100 000 (5-25%)

• Maltenes

Resins : polar aromatics MW 500-50 000 (15-30%)

Aromatics: non-polar aromatics MW 200-3000 (40-65%)

Saturates: aliphatic hydrocarbons and alkyl substituted cyclics MW 200-5000 (5-20%)

Presence of acidic organic compounds in Asphalt

- Carboxylic acids (RCOOH) and anhydrides
- Acid Value
 0 to 4 mg KOH/g

H. Plancher et.al., Proceedings of AAPT volume 46 (1977), pp.151-175

A. Seive, M.F. Morizur, B. G. Koenders, G. Durand, J.E. Poirier., Proceeding of AEMA (1999), pp. 256-263

Possible presence of compounds related to naphthenic acids

Chemical Nature of Road Aggregates

Evidence for acidic surfaces on siliceous aggregates

Stable >900°F in Vacuum

Titova et. al., Langmuir. 1987, **3**, 960

Aggregate and Asphalt Properties

Aggregate	Surface Properties	Asphalt Properties		
Quartzite	Acidic			
Granite	Acidic	Basic Ingredients		
Sandstone	Acidic	Not usually present in significant amounts		
Limestone	Alkaline	Acidic Ingredients		

Depending on the asphalt

Asphalt Aggregate Interactions

Acidic Siliceous Aggregate	No Adhesion or Chemical Bonding
Alkaline Aggregates such as limestone	Adhesion or bonding depending on the type of asphalt (acidic organic compounds)

Aggregates with a high CaCO3 content will not pass polish test
Fines are siliceous material (sand) and the stripping in the fines is more of a problem.

Interaction of alkaline aggregates and asphalt with acidic components

 $CaCO_3 + 2RCOOH \rightarrow (RCOO)_2 Ca + CO_2 + H_2O$

 $CaCO_3 \rightarrow CaO + CO_2$ At high temp possible coating of quick lime on the surface

 $CaO + 2RC00H \rightarrow (RC00)_2 Ca + H_20$

Possible coating of quicklime on the surface of a limestone

This is not possible in siliceous aggregates

Stripping in asphalt pavements Coating without chemical bonding

Moist Aggregate

Dry Aggregate

Stripping

Static immersion test at 60°C

Nynas B 180

Possible ways to improve Surface interaction (adhesion)

Interaction of acidic aggregates and asphalt with alkaline amine components

 $-SiOH + RNH_2 \rightarrow -SiO^-RN^+H_3 + H_20$

Polar End Group Non-Polar Hydrocarbon Chain

Asphalt aggregate interaction in the presence of suitable compounds in asphalt

Asphalt Aggregate Interaction

• All discussions about surface interactions

• Stripping tests

– What are we measuring?

- Boiling Water ASTM D3625
- Static-Immersion AASHTO T182 or ASTM D1664

Static immersion test at 60°C

Nynas B 180

Other Tests

- Modified Lottman AASHTO T283
 or ASTM D4867
- Georgia Wheel Rutting Device
- Hamburg Wheel Rutting Device

Typical Appearance

Modified Lottman test results

Additive + Gilsonite

Additive	Gilsonite	Additive	, St. psi Drv	St. psi Wet	TSR %	Property
Control	0	0	137	64	47	
Additive	0	1	119	92	77	SI
Control with Gilsonite	0.47	0	203	100	49	Harder asp
Additive + Gilsonite	0.47	1	188	154	82	SI + Harder asp
Additive + Gilsonite	0.24	1	153	131	85	SI + Harder asp

*1.0 by the weight of the asphalt

Asphalt + Gilsonite = 4.7% (10% and 5% by the weight of asphalt)

Lottman test and it's variations

- Surface Interaction (Adhesion and Stripping) + other parameters?
- *Other parameter hardness?*
- Lottman type tests
 - Weakening of specimen during freeze-thaw Expansion caused by water becoming ice?
 - Harder asphalts and Mix can resist this expansion better

Hamburg Wheel Tracking Test

 Known that harder (high softening point) asphalts give better results

 Polymer modified
 Oxidized (air blown) asphalts

Surface interaction + rutting

 Harder asphalts resist rutting better

Important test methods for Hot-mix And Possible properties evaluatedby various tests

Test methods	Observed properties
Boil test, Static immersion	Surface interaction between aggregate and asphalt
Lottman type tests And Wheel tracking tests	Surface interaction + Hardening effect of the asphalt and mix

- 1. Asphalt Aggregate interaction (Adhesion and Stripping) depends on the type of aggregate and asphalt composition
- 2. There is a lack of interaction (Adhesion) in most mixes
- *3. Adhesion and stripping is a surface phenomenon*
- 4. May be a combination of stripping tests should be used to evaluate both surface interactions and the mix properties?

