INTRODUCTION

An important element in maintenance engineers’ efforts to protect and preserve the sizeable investment in roads is the Full-Depth® asphalt patch. It is used to repair all types of localized pavement distress that extend below the roadway surface. Examples of these are pot holes, alligator cracking, upheaval, and shoving.

Simply stated, the procedure is to remove the failed area and replace it with fresh asphalt mix. Although the operation is not difficult, frequently some of the necessary fine points are not attended to. Yet, these fine points often determine whether the completed patch will be a temporary expedient or an integral part of a functional pavement system.

This publication outlines the correct procedure for constructing a Full-Depth asphalt patch.

PATCHING MIXES

Asphalt Concrete — This is a high quality, thoroughly controlled hot mixture of well-graded, high quality aggregate and asphalt cement. The materials are mixed at a high temperature and should be laid and compacted before the mix temperature drops much below 93°C (200°F). These mixtures, designed for strength and long life, should be used whenever this is practical and economical.

Plant Mixes with Emulsified or Cutback Asphalts, Cold Laid — These mixtures consist of a local aggregate and an emulsified or cutback asphalt mixed in a plant. They may be used immediately, if properly aerated, or stockpiled for future use.

*Full-Depth® — The term Full-Depth (registered by The Asphalt Institute with the U.S. Patent Office) certifies that the pavement is one in which asphalt mixtures are employed for all courses above the subgrade or improved subgrade. A Full-Depth asphalt pavement is laid directly on the prepared subgrade.
CONSTRUCTING THE PATCH

- With a pavement saw or pneumatic hammer, cut the outline of the patch, extending at least 0.3 m (1 ft) outside of the distressed area. The outline should be square or rectangular with two of the sides at right angles to the direction of traffic.

- Excavate as much pavement as necessary to reach firm support (Fig. I). If a patch is to be an integral part of the pavement, its foundation must be as strong or stronger than that of the original roadway. This may mean that some of the subgrade will also have to be removed. The faces of the excavation should be straight and vertical.

- Trim and compact the subgrade.

- Apply a tack coat to the vertical faces of the excavation (Fig. II). SS-1, SS-1h, CSS-1, CSS-1h, RS-1, CRS-1 emulsified asphalts are all suitable.

- Backfill with the asphalt mixture (Fig. III). Shovel the mixture directly from the truck into the prepared excavation. Place the shovels-full against the edges of the hole first (rather than in the center and then raking to the edges). The maximum lift thickness largely depends upon the type of asphalt mixture and the available compaction equipment. Asphalt concrete can and should be placed in deep lifts, since the greater heat retention of the thicker layers facilitates compaction. From a compaction standpoint, patches using asphalt concrete can be backfilled in one lift. However, when placing a patch that is deeper than 125 mm (5 in.) it is often useful to leave the first lift 25 to 50 mm (1 to 2 in.) below the finished grade, making it easier to judge the total quantity of mixture required for the patch.
On the other hand, patches constructed with mixtures containing emulsified or cutback asphalt must be placed in layers thin enough to permit evaporation of the diluents that make the mixture workable.

- Spread carefully to avoid segregation of the mixture (Fig. IV). Avoid pulling the material from the center of the patch to the edges. If more material is needed at the edge, it should be deposited there, and the excess raked away. The amount of mixture used should be sufficient to ensure that after compaction, the patch surface will not be below that of the adjacent pavement. On the other hand, if too much material is used, a hump will result.

- Compact each lift of the patch thoroughly (Fig. V). Use equipment that is suited for the size of the job. A vibratory plate compactor is excellent for small jobs, while a vibratory roller is likely to be more effective for larger areas.

When compacting the final lift (which may be the only lift), overlap the first pass and return of the vibratory roller or plate compactor no more than 150 mm (6 in.) on to the patch on one side. Then move to the opposite side and repeat the process. Once this is accomplished, proceed at right angles to the compacted edges, with each pass and return overlapping a few millimetres (inches) on to the uncompacted mix. If there is a grade, compaction should proceed from the low side to the high side to minimize possible shoving of the mix.

When adequate compaction equipment is used, the surface of the patch should be at the same elevation as the surrounding pavement. However, if hand tamping or other light compaction methods are used, the surface of the completed patch should be slightly higher than the adjacent pavement, since the patch is likely to be further compressed by traffic.

- Check the vertical alignment and smoothness of the patch with a straightedge or stringline (Fig. VI).
ADDITIONAL INFORMATION

Additional information on pavement maintenance is available from the Asphalt Institute offices listed below.

The following Construction Leaflets may also be of interest:

- CL-5 Pavement Rehabilitation — Preparation for Asphalt Overlays
- CL-6 Pavement Rehabilitation — Asphalt Widening
- CL-10 Open-Graded Asphalt Friction Courses
- CL-13 Specifications for Undersealing Portland Cement Concrete Pavements with Asphalt
- CL-14 Surface Treatment Tips
- CL-15 Maintenance and Repair of Asphalt Parking Lots

ASPHALT INSTITUTE ENGINEERING OFFICES (As of April 1, 1983)

NORTHEASTERN REGION (II)

COLLEGE PARK, MD. 20740—Asphalt Institute Bldg., (301) 277-4258, District of Columbia, Maryland, Delaware
ALBANY, N.Y. 12205—6 Airline Dr., (518) 869-2335, New York
BOSTON, MASS.—(Address: 599 North Ave., Door 9, Wakefield 01880), (617) 245-6046, Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont
HARRISBURG, PA. 17109—13 North Progress Ave., (717) 545-4713, New Jersey, Pennsylvania
COLUMBUS, OHIO.—(Address: 6563 Worthington-Galena Rd., Suite 204, Worthington 43085), (614) 436-9529, Ohio
INDIANAPOLIS, IND. 46240—1010 East 86th St., (317) 846-9146, Indiana, Michigan
CHICAGO, ILL.—(Address: 2400 E. Devon Ave., Suite 159, Des Plaines 60018), (312) 297-5907, Illinois, Wisconsin
MINNEAPOLIS, MINN. 55422—6100 Golden Valley Rd., Suite 113, (612) 546-2311, Minnesota, Iowa

SOUTHEASTERN REGION (II)

JACKSON, MISS. 39206—415 Comet Dr., Suite 3, (601) 981-3417, Louisiana, Mississippi, Alabama, Memphis (Tenn.)
AUSTIN, TEXAS 78723—2011 Anchor Lane, No. C, (512) 472-2339, Eastern Texas
NORTH LITTLE ROCK, ARK. 72116—P. O. Box 4007 (5318 John F. Kennedy Blvd.), (501) 758-0484, Arkansas, Oklahoma
TALLAHASSEE, FLA. 32303—2639 North Monroe, Sta. 15, (904) 385-7822, Florida, Georgia
RALEIGH, N.C. 27605—2016 Cameron St., (919) 828-5998, North Carolina, South Carolina, Virginia
LOUISVILLE, KY. 40207—4050 Westport Rd., (502) 895-6966, Kentucky, West Virginia, Tennessee (except Memphis)
JEFFERSON CITY, MO. 65101—400 East High St., Suite 305, (314) 635-1181, Missouri, Kansas

WESTERN REGION (III)

SACRAMENTO, CALIF. 95815—1796 Tribute Rd., (916) 922-6507, Northern California, Nevada, Alaska, Hawaii
LONG BEACH, CALIF. 90807—4201 Long Beach Blvd., Suite 230, (213) 427-7985, Southern California
TEMPE, ARIZ. 85282—201 East Southern Ave., Suite 115, (602) 829-0448, Arizona, New Mexico, Southwest Texas
PORTLAND, ORE.—(Address: Park Plaza West, Suite 322, 17000 S.W. Beaverton-Hillsdale Hwy., Beaverton 97005), (503) 843-4111, Oregon, Idaho
OLYMPIA, WASH. 98501—120 Union Avenue Bldg., (206) 543-0320, Washington, Montana
DENVER, COLO. 80215—1401 Saulsbury St., Suite 205, (303) 238-3411, Colorado, Utah, Wyoming
OMAHA, NEB. 68132—6801 Dodge St., Room 105, (402) 556-4811, Nebraska, North Dakota, South Dakota

DCP3M483 Printed in U.S.A.